
Design and Implementation of MPI on
Portals 3.0

Ron Brightwell and Rolf Riesen
Sandia National Labs

Scalable Computing Systems Department
{bright,rolf}@cs.sandia.gov

Arthur B. Maccabe
University of New Mexico
Computer Science Department

maccabe@cs.unm.edu

mailto:bright@cs.sandia.gov
mailto:maccabe@cs.unm.edu

Portals 3.0

• New API for functionality of Portals 2.0 on
ASCI/Red

• Intended to provide application bypass
capabilities for programmable NICs

Portals Addressing
Operational BoundaryPortal Table

Memory
Descriptors

Event Queue Memory
Regions

Match List

Application
SpacePortal Space

Access Control Table

Portals 3.0 Objects

• Match entry criteria:
– Process id (nid/pid,gid/rid)
– Match bits (64 bits)
– Ignore bits – mask off unimportant match bits

• Memory descriptor options
– Respond to gets
– Respond to puts
– Sender or receiver managed
– Truncate
– Generate an acknowledgement
– Unlink when threshold is 0

MPI Protocols
• Short protocol

– Eager send
– Buffer unexpected messages (messages for which there

is no matching posted receive) at the receiver
– Unexpected messages are copied when the receive is

posted
• Short synchronous protocol

– Same as short protocol, but waits for acknowledgment
• Long protocol

– Eager send
– Buffer unexpected messages in-place at the sender
– Unexpected messages are pulled from the sender when

the receive is posted
• Ready protocol

– Same as short protocol for both short and long
messages, but no receive-side buffering

Flow Control

• Portals flow control
– Drop messages that receiver is not prepared for
– There are no unexpected messages

• Long eager protocol might waste network
resources
– Good performance for well-behaved apps
– Network resources belong to the app
– Doesn’t matter on ASCI/Red, network can handle it
– Doesn’t matter on Cplant™, RMPP takes care of it

Previous Strategy for Unexpected Messages
Pre-posted

Match none

Match any

Match any

short,unlink

short,unlink

short,unlink

0, trunc, ACK

Mark

Event
Queue

buffer

buffer

buffer

Limitations

• Limited number of unexpected messages allowed
due to kernel memory resources

• Any size unexpected message consumes an
unexpected message slot, even zero-length

• Unexpected message limit based on count rather
than size

• Consumes a significant amount of Portals
resources
– 1025 memory descriptors

Current Strategy

Match none

Match any

Match any

short, ACK

short, ACK

short, ACK

0, truncate, ACK

Pre-posted receives

Event
Queue

buffer

buffer

buffer

Match any

Match any

Marker

Advantages

• More efficient use of unexpected message
memory
– A zero-length message doesn’t consume any

memory
– Limitation becomes space rather than count

• Uses only a few Portals resources
– Four memory descriptors versus 1025

	Design and Implementation of MPI on Portals 3.0
	Portals 3.0
	Portals Addressing
	Portals 3.0 Objects
	MPI Protocols
	Flow Control
	Previous Strategy for Unexpected Messages
	Limitations
	Current Strategy
	Advantages

